

Advanced Computer Graphics Ray-Tracing

G. Zachmann University of Bremen, Germany cgvr.informatik.uni-bremen.de

Effects Needed for Realistic Rendering

- Remember one of the local lighting models from CG1?
- All local lighting models fail to render one of the following effects:
 - (Soft) Shadows (Halbschatten)
 - Reflection on glossy surfaces, e.g., mirrors (Reflexionen)
 - Refraction, e.g., on water or glass surfaces (Brechung)
 - Indirect lighting (sometimes in the form of "color bleeding")
 - Diffraction (Beugung)
 - ...

Bremen

Global Illumination

- Goal: photorealistic rendering
- The "solution": the rendering equation

[Kajiya, Siggraph 1986]

$$L_r(x,\omega_r) = L_e(x,\omega_r) + \int_{\Omega} \rho(x,\omega_r,\omega_i) L_i(x,\omega_i) \cos(\omega_i) d\omega_i$$

 L_i = the "amount" of light *incident* on *x* from direction ω_i L_e = the "amount" of light *emitted* (i.e., "produced") from *x* into direction ω_r L_r = the "amount" of light *reflected* from *x* into direction ω_r ρ = function of the reflection coefficient (= BRDF, see CG1)

 Ω = hemisphere around the normal

Approximations to the Rendering Equation

- Solving the rendering equation is impossible!
- Observation: the rendering equation is a recursive function
- Consequently, a number of approximation methods have been developed that are based on the idea of following rays:

April 2014

- Ray tracing [Whitted, Siggraph 1980, "An Improved Illumination Model for Shaded Display"]
- Radiosity [Goral et. al, Siggraph 1984, "Modeling the Interaction of Light between diffuse Surface"]
- Current state of the art:
 - Ray-tracing, combined with photon tracing, combined with Monte Carlo methods

Turner Whitted, Microsoft Research

llüj

The Simple "Whitted-style" Ray-Tracing

Bromon

- Synthetic camera = viewpoint + image plane in world space
- 1. Shoot rays from camera through every pixel into scene (primary rays)
- 2. If the ray hits more than one object, then consider only the first hit
- 3. From there, shoot rays to all light sources (shadow feelers)
- If a shadow feeler hits another obj → point is in shadow w.r.t. that light source.
 Otherwise, evaluate a lighting model (e.g., Phong [see CG1])
- 5. If the hit obj is glossy, then shoot reflected rays into scene (secondary rays) \rightarrow recursion
- 6. If the hit object is transparent, then shoot refracted ray \rightarrow more recursion

- Bremen
- Assumptions in the simple Whitted-style ray-tracing:
 - Point light sources
 - Many more ...
- Limitations: can model only ..
 - Specular (ideal) reflections,
 - Perfect refractions,
 - Hard shadows

One of the First Ray-Traced Images

Turner Whitted 1980

A Little Bit of Ray-Tracing Folklore

Bremen

The principle of ray-tracing is so easy that you can write a "complete" ray-tracer on the back of a business card:

typedef struct{double x,y,z}vec;vec U,black.amb={.02,.02,.02};struct sphere{ vec cen,color;double rad,kd,ks,kt,kl,ir}*s,*best,sph[]={0.,6.,.5,1.,1.,1.,9, .05, .2, .85, 0., 1.7, -1., 8., -.5, 1., .5, .2, 1., .7, .3, 0., .05, 1.2, 1., 8., -.5, .1, .8, .8, 1.,.3,.7,0.,0.,1.2,3.,-6.,15.,1.,.8,1.,7.,0.,0.,0.,0.,.6,1.5,-3.,-3.,12.,.8,1., 1.,5.,0.,0.,0.,.5,1.5,};yx;double u,b,tmin,sqrt(),tan();double vdot(A,B)vec A ,B;{return A.x*B.x+A.y*B.y+A.z*B.z;}vec vcomb(a,A,B)double a;vec A,B;{B.x+=a* A.x;B.y+=a*A.y;B.z+=a*A.z;return B;}vec vunit(A)vec A;{return vcomb(1./sqrt(vdot(A,A)),A,black);}struct sphere*intersect(P,D)vec P,D;{best=0;tmin=1e30;s= sph+5;while(s-->sph)b=vdot(D,U=vcomb(-1.,P,s->cen)),u=b*b-vdot(U,U)+s->rad*s ->rad,u=u>0?sart(u):1e31,u=b-u>1e-7?b-u:b+u,tmin=u>=1e-7&&u<tmin?best=s,u: tmin;return best;}vec trace(level,P,D)vec P,D;{double d,eta,e;vec N,color; struct sphere*s,*l;if(!level--)return black;if(s=intersect(P,D));else return amb;color=amb;eta=s->ir;d= -vdot(D,N=vunit(vcomb(-1.,P=vcomb(tmin,D,P),s->cen)));if(d<0)N=vcomb(-1.,N,black),eta=1/eta,d= -d;l=sph+5;while(l-->sph)if((e=1 ->kl*vdot(N,U=vunit(vcomb(-1.,P,l->cen))))>0&&intersect(P,U)==l)color=vcomb(e ,l->color,color);U=s->color;color.x*=U.x;color.y*=U.y;color.z*=U.z;e=1-eta* eta*(1-d*d);return vcomb(s->kt.e>0?trace(level,P,vcomb(eta,D,vcomb(eta*d-sart (e),N,black))):black,vcomb(s->ks,trace(level,P,vcomb(2*d,N,D)),vcomb(s->kd, color,vcomb(s->kl,U,black)));}main(){printf("%d %d\n".32.32);while(vx<32*32)</pre> $U.x=yx^{32}-32/2, U.z=32/2-yx++/32, U.y=32/2/tan(25/114.5915590261), U=vcomb(255.)$ trace(3,black,vunit(U)),black),printf("%.0f %.0f %.0f \n",U);}/*minray!*/

(Also won the International Obfuscated C Code Contest)

[Paul Heckbert, ca. 1994]

Bremen

- Basic idea of ray-tracing: construct ray paths from the light sources to the eye, but follow those paths "backwards"
- Leads (conceptually!) to a tree, the ray tree:

Visualizing the ray tree can be very helpful for deubgging

Interactive Demo

http://www.siggraph.org/education/materials/HyperGraph/raytrace/rt_java/raytrace.html

 The ancient explanation for our capability of seeing: "seeing rays"

Albrecht Dürer's "Ray Casting Machines" [16th century]

Examples of Ray-Traced Images

Intermission: Giorgio Morandi

The "sphere flake" from the *standard procedural databases* (SPD) by Eric Haines [http://www.acm.org/tog/resources/SPD/].

Fake or Real?

The Camera (Ideal Pin-Hole Camera)

The main loop of ray-tracers

Probably the Oldest Depiction of a Pinhole Camera

R. Gemma Frisius, 1545

Digression: Johannes Vermeer

Other Strange Cameras

- With ray-tracing, it is easy to implement non-standard projections
- For instance: fish-eye lenses, projections on a hemi-sphere (= the dome in Omnimax theaters), panoramas

SS

The Lighting Model

- We will use Phong (for sake of simplicity)
- The light emanating from a point on a surface:

$$L_{ ext{total}} = L_{ ext{Phong}} + \dots$$
 more terms (later)
 $L_{ ext{Phong}} = \sum_{j=1}^{n} (k_d \cos \phi_j + k_s \cos^p \Theta_j) \cdot I_j$

 k_d = reflection coefficient for diffuse reflection k_s = reflection coefficient for specular reflection I_j = light coming in from *j*-th light source n = number of light sources

 Of course, we add a light source only, if it is visible!

Stopping Criteria for the Recursion

- Each recursive algorithm needs a criterion for stopping:
 - If the maximum recursion depth is reached (fail-safe criterion)
 - If the contribution to a pixel's color is too small (decreases with depth'')

Bromon

W

Scene overview

Recursion depth: 100

Recursion depth: 3

Recursion depth: 5

Secondary Rays

Bremen

W

- Assumption: we found a hit for the primary ray with the scene
- Then the *reflected ray* is:

$$\mathbf{r} = ((-\mathbf{d} \cdot \mathbf{n}) \cdot \mathbf{n} - (-\mathbf{d})) \cdot 2 + (-\mathbf{d})$$

= $\mathbf{d} - 2(\mathbf{d} \cdot \mathbf{n}) \cdot \mathbf{n}$

with
$$\| {f n} \| = 1$$

Additional term in the lighting model:

 $L_{\text{total}} = L_{\text{Phong}} + k_s L_r + \dots$ more terms (later)

 L_r = reflected light coming in from direction r(= perfect reflection) k_s = material coefficient for specular reflection

The Refracted Ray (a.k.a. Transmitted Ray)

Law of refraction [Snell, ca.1600] :

 $n_1\sin\theta_1=n_2\sin\theta_2$

Computation of the refracted ray:

$$\mathbf{t} = \frac{n_1}{n_2} (\mathbf{d} + \mathbf{n} \cos \theta_1) - \mathbf{n} \cos \theta_2$$
$$\cos \theta_1 = -\mathbf{d}\mathbf{n}$$

$$\cos^2 \theta_2 = 1 - \frac{n_1^2}{n_2^2} \left(1 - (\mathbf{dn})^2 \right)$$

Typical refractiveLuftWasserGlasDiamantindices:1.01.331.5 - 1.72.4

Derivation of the Equation on the Previous Slide

$$|\mathbf{n}| = |\mathbf{b}| = 1$$

$$\mathbf{t} = \cos \theta_2 \cdot (-\mathbf{n}) + \sin \theta_2 \cdot \mathbf{b}$$

$$\mathbf{d} = \cos \theta_1 \cdot (-\mathbf{n}) + \sin \theta_1 \cdot \mathbf{b}$$

$$\mathbf{b} = \frac{\mathbf{d} + \mathbf{n} \cdot \cos \theta_1}{\sin \theta_1}$$

$$\mathbf{t} = -\mathbf{n} \cdot \cos \theta_2 + \frac{\sin \theta_2}{\sin \theta_1} (\mathbf{d} + \mathbf{n} \cdot \cos \theta_1)$$

 $\cos \theta_2$ ausrechnen:

$$\sin heta_2 = rac{n_1}{n_2} \sin heta_1$$

 $\sin^2 + \cos^2 = 1$
 $\cos^2 heta_2 = 1 - (rac{u_1}{u_2} \sin heta_1)^2$

Total reflection occurs, whenever the following condition holds:

if radicand < 0
$$\Leftrightarrow \cos^2 \theta_1 \le 1 - \frac{n_2^2}{n_1^2}$$

The complete lighting model (for now):

$$L_{\rm total} = L_{\rm Phong} + k_s L_r + k_t L_t$$

 L_t = transmitted light coming in from direction t k_t = material coefficient for refraction

The Effect of the Refractive Index

Bremen

- Food for thought: do the computations of the reflected and transmitted rays also work, if the normal of the surface is pointing into the "wrong" direction?
 - Which direction is the wrong one anyway?

Glitch Pictures: Incorrect Refraction

Source: yiningkarlli (http://igad2.nhtv.nl/ompf2)

Which Effect Can We Not Quite Simulate Correctly (Yet)?

The Fresnel Terms

- When moving from one medium to another, a specific part of the light is reflected, the rest is always refracted
- The reflection coefficient ρ depends on the refractive indices of the involved materials, and on the angle of incidence:

$$\rho_{\parallel} = \frac{n_2 \cos \theta_1 - n_1 \cos \theta_2}{n_2 \cos \theta_1 + n_1 \cos \theta_2}$$

$$\rho_{\perp} = \frac{n_1 \cos \theta_1 - n_2 \cos \theta_2}{n_2 \cos \theta_1 + n_1 \cos \theta_2}$$

$$\rho = \frac{1}{2} \cdot \left(\rho_{\parallel}^2 + \rho_{\perp}^2 \right)$$

• $1-\rho$ = the amount of the transmitted light

U

Bremen

• Example:

• Air (*n* = 1.0) to glass (*n* = 1.5), angle of incidence = perpendicular:

$$\rho_{\parallel} = \frac{1.5 - 1}{1.5 + 1} = \frac{1}{5} \quad \rho_{\perp} = \frac{1 - 1.5}{1.5 + 1} = \frac{1}{5} \quad \rho = \frac{1}{2} \cdot \frac{2}{25} = 4\%$$

- I.e., when moving perpendicularly from air to glass, 4% of the light is reflected, the rest is refracted
- Approximation of the Fresnel terms [Schlick 1994]:

$$\rho(\theta) \approx \rho_0 + (1 - \rho_0) \left(1 - \cos\theta\right)^5$$
$$\rho_0 = \left(\frac{n_2 - 1}{n_2 + 1}\right)^2$$

where ρ_0 = Fresnel term for perpendicular angle of incidence, and θ = angle between ray and normal in the thinner medium (i.e., the larger angle)

Example for Refraction with Fresnel Terms

Attenuation (Dämpfung) in Participating Media

- When light travels through a medium, its intensity is attenuated, depending on the length of its path through the medium
- The Lambert-Beer Law governs this attenuation:

$$I(s) = I_0 e^{-\alpha s}$$

where α = some material constant, and s = the distance travelled in the medium

W

- In reality, the refractive index depends on the wavelength!
- This effect cannot be modelled any more with simple "RGB light"; this requires a spectral ray-tracer

Giovanni Battista Pittoni, 1725, "An Allegorical Monument to Sir Isaac Newton"

Pink Floyd, The Dark Side of the Moon

SS

Example with Fresnel Terms and Dispersion

Intersection Computations Ray-Primitive

Bremen

- Amount to the major part of the computation time
- Given: a set of objects (e.g., polygons, spheres, ...) and a ray

• Wanted: the line parameter t of the *first* intersection point P = P(t) with the scene

Intersection of Ray with Polygon

- Intersection of the ray (parametric) with the supporting plane of the polygon (implicit) → point
- Test whether this point is in the polygon:
 - Takes place completely in the plane of the polygon
 - 3D point is in 3D polygon ⇔ 2D point is in 2D poly
- Project point & polygon:
 - Along the normal: too expensive
 - Orthogonal onto coord plane: simply omit one of the 3 coords of all points involved
- Test whether 2D point is in 2D polygon:
 - Count the number of intersection between (another, 2D) ray and the 2D polygon

SS

Bremen

Interludium: the Complete Ray-Tracing-Routine

Bromon

W

Class for storing lightsources (here, just positional light sources):

Vector	m_	location;	11	Position
Vector	m_	color;	11	Farbe

Class for storing the material of surfaces:

```
Vector m_color; // Farbe der Oberfläche
float m_diffuse; // Diffuser / Spekularer
float m_specular; // Reflexionskoeff. [0..1]
float m_phong; // Phong-Exponent
```

• A class for rays:

Vector m_origin; // Aufpunkt des Strahls
Vector m_direction; // Strahlrichtung

- Class for passing around data about intersections (hit):
 - Important class
 - Records all kinds of information about an intersection point

Camera:

- Captures all properties of a virtual camera, e.g., from, at, up, angle
- Generates primary rays for all pixels
- Scene:
 - Stores all data about the scene
 - List of all objects
 - List of all materials
 - List of all light sources
 - Camera
 - Offers methods for calculating intersection between ray and geometry
 - Usually also stores some acceleration data structure

G. Zachmann **Advanced Computer Graphics** SS April 2014

- 3D point is in triangle $\Leftrightarrow \alpha, \beta, \gamma > 0$, $\alpha + \beta + \gamma = 1$
- Alternative method: see Möller & Haines "Real-time Rendering"
- Ex. faster method, if intersection point not needed [Segura & Feito]

- Project point & triangle on coord plane
- Intersect ray with plane (implicit form) \rightarrow t \rightarrow point in space

Be clever: use barycentric coords + projection

- Compute baryzentric coords of 2D point
- baryzentric coords of 2D point $(\alpha, \beta, \gamma) =$ baryzentric coords of orig. 3D point!

Bremen

W

Interscetion of Ray with Triangle

Use same method like ray—polygon; or

Alternative Intersection Method for Ray—Triangle

- Line equation: $X = P + t \cdot \mathbf{d}$
- Plane equation: $X = A + r \cdot (B A) + s \cdot (C A)$
- Equate both:

$$-t \cdot \mathbf{d} + r \cdot (B - A) + s \cdot (C - A) = P - A$$

• Write it in matrix form:

$$\begin{pmatrix} \vdots & \vdots & \vdots \\ -\mathbf{d} & \mathbf{u} & \mathbf{v} \\ \vdots & \vdots & \vdots \end{pmatrix} \begin{pmatrix} t \\ r \\ s \end{pmatrix} = \mathbf{w}$$

where

$$u = B - A$$
$$v = C - A$$
$$w = P - A$$

[Möller]

Use Cramer's rule:

$$\begin{pmatrix} t \\ r \\ s \end{pmatrix} = \frac{1}{\det(-\mathbf{d}, \mathbf{u}, \mathbf{v})} \cdot \begin{pmatrix} \det(\mathbf{w}, \mathbf{u}, \mathbf{v}) \\ \det(-\mathbf{d}, \mathbf{w}, \mathbf{v}) \\ \det(-\mathbf{d}, \mathbf{u}, \mathbf{w}) \end{pmatrix}$$

$$\det(\mathbf{a}, \mathbf{b}, \mathbf{c}) = \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$$

$$\begin{pmatrix} t \\ r \\ s \end{pmatrix} = \frac{1}{(\mathbf{d} \times \mathbf{v}) \cdot \mathbf{u}} \cdot \begin{pmatrix} (\mathbf{w} \times \mathbf{u}) \cdot \mathbf{v} \\ (\mathbf{d} \times \mathbf{v}) \cdot \mathbf{w} \\ (\mathbf{w} \times \mathbf{u}) \cdot \mathbf{d} \end{pmatrix}$$

- Cost: 2 cross products + 4 dot products
- Yields both line parameter t and barycentric coords of hit point
- Still need to test whether s,t in [0,1] and s+t <= 1</p>

Bremen

W

- Box (Quader) is most important bounding volume!
- Here: just axis-aligned boxes (AABB = axis-aligned bounding box)
- AABB is usually specified by two extremal points

 $(x_{\min}, y_{\min}, z_{\min})$ and $(x_{\max}, y_{\max}, z_{\max})$

- Idea of the algorithm:
 - A box is the intersection of 3 slabs (*slab* = subset of space enclosed between two parallel planes)
 - Each slab cuts away a specific interval of the ray
 - So, successively consider two parallel (= opposite) planes of the box

Remarks

Bremen

W

- Optimization: both planes of a slab have the same normal → can save one dot product
- Remark: the algorithm also works for "tilted" boxes (called OBBs = oriented bounding boxes)
- Further optimization: if AABB, exploit fact that normal has exactly one component = 1, other = 0!

- The algebraic method: insert ray equation into implicit sphere equation
- There are many more approaches ...

The algorithm, with small optimization:

calculate $\mathbf{m}^2 - r^2$ calculate $b = \mathbf{m} \cdot \mathbf{d}$ if $m^2 - r^2 \ge 0$ // ray origin is outside sphere and b <= 0: // and direction away from sphere</pre> then return "no intersection" let $d = b^2 - m^2 + r^2$ if d < 0: return "no intersection" if $\mathbf{m}^2 - r^2 > \varepsilon$: return $t_1 = b - \sqrt{d}$ // enter; t_1 is > 0 else: return $t_2 = b + \sqrt{d}$ // leave; t₂ is > 0 (t₁<0)

Ray-sphere intersection is so easy that all ray-tracers have spheres as geometric primitives! ⁽²⁾

The "sphere flake"