
Advanced Computer Graphics
Ray-Tracing

G. Zachmann
University of Bremen, Germany
cgvr.informatik.uni-bremen.de

G. Zachmann 2 Ray Tracing Advanced Computer Graphics 24 April 2014 SS

Effects Needed for Realistic Rendering

§  Remember one of the local lighting models from CG1?

§  All local lighting models fail to render one of the following
effects:

§  (Soft) Shadows (Halbschatten)

§  Reflection on glossy surfaces, e.g., mirrors (Reflexionen)

§  Refraction, e.g., on water or glass surfaces (Brechung)

§  Indirect lighting (sometimes in the form of "color bleeding")

§  Diffraction (Beugung)

§ …

Ø Global Illumination

G. Zachmann 3 Ray Tracing Advanced Computer Graphics 24 April 2014 SS

The Rendering Equation

§  Goal: photorealistic rendering

§  The "solution": the rendering equation [Kajiya, Siggraph 1986]

Li = the "amount" of light incident on x from direction ωi
Le = the "amount" of light emitted (i.e., "produced") from x into direction ωr
Lr = the "amount" of light reflected from x into direction ωr
ρ = function of the reflection coefficient (= BRDF, see CG1)
Ω = hemisphere around the normal

Li Lr ωi

x

ρ ρ

ωr

Lr (x ,!r) = Le(x ,!r) +

Z

⌦

⇢(x ,!r ,!i)Li(x ,!i) cos(!i)d!i

G. Zachmann 4 Ray Tracing Advanced Computer Graphics 24 April 2014 SS

Approximations to the Rendering Equation

§  Solving the rendering equation is impossible!

§  Observation: the rendering equation is a recursive function

§  Consequently, a number of approximation methods have been
developed that are based on the idea of following rays:

§  Ray tracing [Whitted, Siggraph 1980,
"An Improved Illumination Model
for Shaded Display"]

§  Radiosity [Goral et. al, Siggraph 1984,
"Modeling the Interaction of Light
between diffuse Surface"]

§  Current state of the art:

§  Ray-tracing, combined with photon tracing,
combined with Monte Carlo methods

Turner Whitted,
Microsoft Research

G. Zachmann 5 Ray Tracing Advanced Computer Graphics 24 April 2014 SS

The Simple "Whitted-style" Ray-Tracing

§  Synthetic camera = viewpoint + image plane in world space

1.  Shoot rays from camera through every pixel into scene (primary rays)

2.  If the ray hits more than one object, then consider only the first hit

3.  From there, shoot rays to all light sources (shadow feelers)

4.  If a shadow feeler hits another obj → point is in shadow w.r.t. that light source.
Otherwise, evaluate a lighting model (e.g., Phong [see CG1])

5.  If the hit obj is glossy, then shoot reflected rays into scene (secondary rays) → recursion

6.  If the hit object is transparent, then shoot refracted ray → more recursion

G. Zachmann 6 Ray Tracing Advanced Computer Graphics 24 April 2014 SS

§  Assumptions in the simple Whitted-style ray-tracing:

§  Point light sources

§ Many more ...

§  Limitations: can model only ..

§  Specular (ideal) reflections,

§  Perfect refractions,

§  Hard shadows

G. Zachmann 7 Ray Tracing Advanced Computer Graphics 24 April 2014 SS

One of the First Ray-Traced Images

Turner Whitted 1980

G. Zachmann 8 Ray Tracing Advanced Computer Graphics 24 April 2014 SS

A Little Bit of Ray-Tracing Folklore

§  The principle of ray-tracing is so easy that you can write a
"complete" ray-tracer on the back of a business card:

typedef struct{double x,y,z}vec;vec U,black,amb={.02,.02,.02};struct sphere{	
vec cen,color;double rad,kd,ks,kt,kl,ir}*s,*best,sph[]={0.,6.,.5,1.,1.,1.,.9,	
.05,.2,.85,0.,1.7,-1.,8.,-.5,1.,.5,.2,1.,.7,.3,0.,.05,1.2,1.,8.,-.5,.1,.8,.8,	
1.,.3,.7,0.,0.,1.2,3.,-6.,15.,1.,.8,1.,7.,0.,0.,0.,.6,1.5,-3.,-3.,12.,.8,1.,	
1.,5.,0.,0.,0.,.5,1.5,};yx;double u,b,tmin,sqrt(),tan();double vdot(A,B)vec A	
,B;{return A.x*B.x+A.y*B.y+A.z*B.z;}vec vcomb(a,A,B)double a;vec A,B;{B.x+=a*	
A.x;B.y+=a*A.y;B.z+=a*A.z;return B;}vec vunit(A)vec A;{return vcomb(1./sqrt(
vdot(A,A)),A,black);}struct sphere*intersect(P,D)vec P,D;{best=0;tmin=1e30;s=	
sph+5;while(s-->sph)b=vdot(D,U=vcomb(-1.,P,s->cen)),u=b*b-vdot(U,U)+s->rad*s	
->rad,u=u>0?sqrt(u):1e31,u=b-u>1e-7?b-u:b+u,tmin=u>=1e-7&&u<tmin?best=s,u:	
tmin;return best;}vec trace(level,P,D)vec P,D;{double d,eta,e;vec N,color;	
struct sphere*s,*l;if(!level--)return black;if(s=intersect(P,D));else return	
amb;color=amb;eta=s->ir;d= -vdot(D,N=vunit(vcomb(-1.,P=vcomb(tmin,D,P),s->cen	
)));if(d<0)N=vcomb(-1.,N,black),eta=1/eta,d= -d;l=sph+5;while(l-->sph)if((e=l	
->kl*vdot(N,U=vunit(vcomb(-1.,P,l->cen))))>0&&intersect(P,U)==l)color=vcomb(e	
,l->color,color);U=s->color;color.x*=U.x;color.y*=U.y;color.z*=U.z;e=1-eta*	
eta*(1-d*d);return vcomb(s->kt,e>0?trace(level,P,vcomb(eta,D,vcomb(eta*d-sqrt	
(e),N,black))):black,vcomb(s->ks,trace(level,P,vcomb(2*d,N,D)),vcomb(s->kd,	
color,vcomb(s->kl,U,black))));}main(){printf("%d %d\n",32,32);while(yx<32*32)	
U.x=yx%32-32/2,U.z=32/2-yx++/32,U.y=32/2/tan(25/114.5915590261),U=vcomb(255.,	
trace(3,black,vunit(U)),black),printf("%.0f %.0f %.0f\n",U);}/*minray!*/	

[Paul Heckbert, ca. 1994] (Also won the International Obfuscated C Code Contest)

G. Zachmann 9 Ray Tracing Advanced Computer Graphics 24 April 2014 SS

The Ray Tree

§  Basic idea of ray-tracing: construct ray paths from the light
sources to the eye, but follow those paths "backwards"

§  Leads (conceptually!) to a tree, the ray tree:

E1 = primary ray
Ri = reflected rays
Ti = transmitted rays
Si = shadow rays

G. Zachmann 10 Ray Tracing Advanced Computer Graphics 24 April 2014 SS

§  Visualizing the ray tree can be very helpful for deubgging

Incoming ray
reflected ray
shadow ray
transmitted (refracted) ray

G. Zachmann 11 Ray Tracing Advanced Computer Graphics 24 April 2014 SS

Interactive Demo

http://www.siggraph.org/education/materials/HyperGraph/raytrace/rt_java/raytrace.html

G. Zachmann 12 Ray Tracing Advanced Computer Graphics 24 April 2014 SS

Digression

§  The ancient explanation for our capability of seeing:
"seeing rays"

G. Zachmann 13 Ray Tracing Advanced Computer Graphics 24 April 2014 SS

Albrecht Dürer's "Ray Casting Machines" [16th century]

G. Zachmann 14 Ray Tracing Advanced Computer Graphics 24 April 2014 SS

G. Zachmann 15 Ray Tracing Advanced Computer Graphics 24 April 2014 SS

Examples of Ray-Traced Images

Je
ns

en
, L

ig
ht

sc
ap

e

G. Zachmann 16 Ray Tracing Advanced Computer Graphics 24 April 2014 SS

G. Zachmann 17 Ray Tracing Advanced Computer Graphics 24 April 2014 SS

Intermission: Giorgio Morandi

G. Zachmann 18 Ray Tracing Advanced Computer Graphics 24 April 2014 SS

The "sphere flake" from the standard procedural databases (SPD) by Eric Haines
[http://www.acm.org/tog/resources/SPD/].

G. Zachmann 19 Ray Tracing Advanced Computer Graphics 24 April 2014 SS

G. Zachmann 20 Ray Tracing Advanced Computer Graphics 24 April 2014 SS

G. Zachmann 21 Ray Tracing Advanced Computer Graphics 24 April 2014 SS

Fake or Real?

G. Zachmann 22 Ray Tracing Advanced Computer Graphics 24 April 2014 SS

The Camera (Ideal Pin-Hole Camera)

A

O

for (i = 0; i < height; i ++)
 for (j = 0; j < width; j ++)
 ray.from = A
 t = (i/height – 0.5) * h
 s = (j/width – 0.5) * w
 ray.at = O + s.x + t.y
 trace(0, ray, & color);
 putPixel(x, y, color);

near

h/2

θ

The main loop of ray-tracers

h

2
= near·tan ✓

2

O = A� near·z� w

2
x� h

2
y

G. Zachmann 23 Ray Tracing Advanced Computer Graphics 24 April 2014 SS

Probably the Oldest Depiction of a Pinhole Camera

R. Gemma Frisius, 1545

G. Zachmann 24 Ray Tracing Advanced Computer Graphics 24 April 2014 SS

The Camera Obscura

G. Zachmann 25 Ray Tracing Advanced Computer Graphics 24 April 2014 SS

Digression: Johannes Vermeer

G. Zachmann 26 Ray Tracing Advanced Computer Graphics 24 April 2014 SS

Other Strange Cameras

§  With ray-tracing, it is easy to implement non-standard projections

§  For instance: fish-eye lenses, projections on a hemi-sphere (= the
dome in Omnimax theaters), panoramas

G. Zachmann 27 Ray Tracing Advanced Computer Graphics 24 April 2014 SS

G. Zachmann 28 Ray Tracing Advanced Computer Graphics 24 April 2014 SS

The Lighting Model

§  We will use Phong (for sake of simplicity)

§  The light emanating from a point on a surface:

kd = reflection coefficient for diffuse reflection
ks = reflection coefficient for specular reflection
Ij = light coming in from j-th light source
n = number of light sources

§  Of course, we add a light source only,
if it is visible!

l

v

n l'

Φ

L
total

= L
Phong

+ . . . more terms (later)

L
Phong

=

nX

j=1

(kd cos�j + ks cos
p ⇥j)·Ij

G. Zachmann 29 Ray Tracing Advanced Computer Graphics 24 April 2014 SS

Stopping Criteria for the Recursion

§  Each recursive algorithm needs a criterion for stopping:

§  If the maximum recursion depth is reached (fail-safe criterion)

§  If the contribution to a pixel's color is too small (decreases with depthn)

Recursion depth: 3 Recursion depth: 5 Recursion depth: 100 Scene overview

G. Zachmann 30 Ray Tracing Advanced Computer Graphics 24 April 2014 SS

Secondary Rays

§  Assumption: we found a hit for the
primary ray with the scene

§  Then the reflected ray is:

n

d r

r =
�
(�d·n)·n� (�d)

�
·2 + (�d)

= d� 2(d·n)·n

with knk = 1

G. Zachmann 31 Ray Tracing Advanced Computer Graphics 24 April 2014 SS

§  Additional term in the lighting model:

Lr = reflected light coming in from direction r
 (= perfect reflection)
ks = material coefficient for specular reflection

L
total

= L
Phong

+ ksLr + . . . more terms (later)

G. Zachmann 32 Ray Tracing Advanced Computer Graphics 24 April 2014 SS

The Refracted Ray (a.k.a. Transmitted Ray)

§  Law of refraction [Snell, ca.1600] :

§  Computation of the refracted ray:

§  Typical refractive
indices:

Luft Wasser Glas Diamant

1.0 1.33 1.5 - 1.7 2.4

n1 sin �1 = n2 sin �2

t =
n1

n2
(d + n cos �1)� n cos �2

cos �1 = �dn

cos2 �2 = 1� n2
1

n2
2

�
1� (dn)2

⇥

n

d

t

G. Zachmann 33 Ray Tracing Advanced Computer Graphics 24 April 2014 SS

|n| = |b| = 1

t = cos �2 ·(�n) + sin �2 ·b
d = cos �1 ·(�n) + sin �1 ·b

b =
d + n·cos �1

sin �1

t = �n·cos �2 +
sin �2

sin �1
(d + n·cos �1)

sin �2

sin �1
=

n1

n2

cos �1 = n·(�d)

n

t

b

d

d

r

�1

�1
�2

cos �2 ausrechnen:

sin �2 =
n1

n2
sin �1

sin2 + cos2 = 1

cos2 �2 = 1� (
u1

u2
sin �1)

2

Derivation of the Equation on the Previous Slide

G. Zachmann 34 Ray Tracing Advanced Computer Graphics 24 April 2014 SS

§  Total reflection occurs, whenever the following condition holds:

 if radicand < 0 , cos

2 ✓1 1� n22
n21

G. Zachmann 35 Ray Tracing Advanced Computer Graphics 24 April 2014 SS

§  The complete lighting model (for now):

Lt = transmitted light coming in from direction t
kt = material coefficient for refraction

L
total

= L
Phong

+ ksLr + ktLt

G. Zachmann 37 Ray Tracing Advanced Computer Graphics 24 April 2014 SS

The Effect of the Refractive Index

n=1.0 n=1.1 n=1.2 n=1.3

n=1.4 n=1.5 n=1.6 n=1.7

G. Zachmann 38 Ray Tracing Advanced Computer Graphics 24 April 2014 SS

Which One is the "Correct" Normal?

§  Food for thought: do the computations of the reflected and
transmitted rays also work, if the normal of the surface is pointing
into the "wrong" direction?

§ Which direction is the wrong one anyway?

G. Zachmann 39 Ray Tracing Advanced Computer Graphics 24 April 2014 SS

Glitch Pictures: Incorrect Refraction

Source: yiningkarlli (http://igad2.nhtv.nl/ompf2)

G. Zachmann 40 Ray Tracing Advanced Computer Graphics 24 April 2014 SS

Which Effect Can We Not Quite Simulate Correctly (Yet)?

G. Zachmann 41 Ray Tracing Advanced Computer Graphics 24 April 2014 SS

The Fresnel Terms

§  When moving from one medium to another, a specific part of the
light is reflected, the rest is always refracted

§  The reflection coefficient ρ depends on the refractive indices of
the involved materials, and on the angle of incidence:

§  1-ρ = the amount of the transmitted light

⇥⇥ =
n2 cos �1 � n1 cos �2

n2 cos �1 + n1 cos �2

⇥� =
n1 cos �1 � n2 cos �2

n2 cos �1 + n1 cos �2

⇥ =
1

2
·
�
⇥2
⇥ + ⇥2

�

⇥

G. Zachmann 42 Ray Tracing Advanced Computer Graphics 24 April 2014 SS

§  Example:
§  Air (n = 1.0) to glass (n = 1.5), angle of incidence = perpendicular:

§  I.e., when moving perpendicularly from air to glass, 4% of the light is
reflected, the rest is refracted

§  Approximation of the Fresnel terms [Schlick 1994]:

where ρ0 = Fresnel term for perpendicular angle of incidence, and
θ = angle between ray and normal in the thinner medium
 (i.e., the larger angle)

�⇥ =
1.5� 1

1.5 + 1
=

1

5
�� =

1� 1.5

1.5 + 1
=

1

5
� =

1

2
· 2

25
= 4%

⇥(�) ⇥ ⇥0 + (1� ⇥0) (1� cos �)5

�0 =

�
n2 � 1

n2 + 1

⇥2

G. Zachmann 43 Ray Tracing Advanced Computer Graphics 24 April 2014 SS

Example for Refraction with Fresnel Terms

n=1.0 n=1.1 n=1.2 n=1.3

n=1.4 n=1.5 n=1.6 n=1.7

buggy

G. Zachmann 44 Ray Tracing Advanced Computer Graphics 24 April 2014 SS

Attenuation (Dämpfung) in Participating Media

§  When light travels through a medium, its intensity is attenuated,
depending on the length of its path through the medium

§  The Lambert-Beer Law governs this attenuation:

 where α = some material constant, and
 s = the distance travelled in the medium

I (s) = I0e
��s

G. Zachmann 45 Ray Tracing Advanced Computer Graphics 24 April 2014 SS

Dispersion

§  In reality, the refractive index depends on the wavelength!

§  This effect cannot be modelled any more with simple "RGB light";
this requires a spectral ray-tracer

G. Zachmann 46 Ray Tracing Advanced Computer Graphics 24 April 2014 SS

G
io

va
nn

i B
at

tis
ta

 P
itt

on
i,

 1
72

5,

"A
n

Al
le

go
ric

al
 M

on
um

en
t t

o
Si

r I
sa

ac
 N

ew
to

n"

Pink Floyd, The Dark Side of the Moon

G. Zachmann 47 Ray Tracing Advanced Computer Graphics 24 April 2014 SS

Example with Fresnel Terms and Dispersion

G. Zachmann 48 Ray Tracing Advanced Computer Graphics 24 April 2014 SS

Intersection Computations Ray-Primitive

§  Amount to the major part of the computation time

§  Given: a set of objects (e.g., polygons, spheres, …)
and a ray

§  Wanted: the line parameter t of the first intersection point
P = P(t) with the scene

P(t) = O + t ·d
d

t

O

P

G. Zachmann 49 Ray Tracing Advanced Computer Graphics 24 April 2014 SS

Intersection of Ray with Polygon

§  Intersection of the ray (parametric) with the
supporting plane of the polygon (implicit) →
point

§  Test whether this point is in the polygon:
§  Takes place completely in the plane of the polygon

§  3D point is in 3D polygon ⇔ 2D point is in 2D poly

§  Project point & polygon:
§  Along the normal: too expensive

§ Orthogonal onto coord plane: simply omit one of the
3 coords of all points involved

§  Test whether 2D point is in 2D polygon:
§  Count the number of intersection

between (another, 2D) ray and
the 2D polygon

G. Zachmann 50 Ray Tracing Advanced Computer Graphics 24 April 2014 SS

Interludium: the Complete Ray-Tracing-Routine

traceRay(ray):
 hit = intersect(ray)
 if no hit:
 return no color
 reflected_ray = reflect(ray, hit)
 reflected_color = traceRay(reflected_ray)
 refracted_ray = refract(ray, hit)
 refracted_color = traceRay(refracted_ray)
 for each lightsource[i]:
 shadow_ray = compShadowRay(hit, lightsource[i])
 if intersect(shadow_ray):
 light_color[i] = 0
 overall_color = shade(hit,
 reflected_color,
 refracted_color,
 light_color)
 return overall_color

hit is a data structure (a
struct or an instance of a
class) that contains all infos
about the intersectin between
the ray and the scene, e.g.,
the intersection point, a
pointer to the object, normal, …

The intersect function can
be optimized considerably
compared to traceRay;
in addition, only intersection
points before the light
source are relevant.

Evaluates the lighting model of the hit object.

G. Zachmann 51 Ray Tracing Advanced Computer Graphics 24 April 2014 SS

Typical Classes in the Software Architecture of a Raytracer

§  Class for storing lightsources (here, just positional light sources):

§  Class for storing the material of surfaces:

§  A class for rays:

Vector m_location; // Position
Vector m_color; // Farbe

Vector m_color; // Farbe der Oberfläche
float m_diffuse; // Diffuser / Spekularer
float m_specular; // Reflexionskoeff. [0..1]
float m_phong; // Phong-Exponent

Vector m_origin; // Aufpunkt des Strahls
Vector m_direction; // Strahlrichtung

G. Zachmann 52 Ray Tracing Advanced Computer Graphics 24 April 2014 SS

§  Class for passing around data about intersections (hit):

§  Important class

§  Records all kinds of information about an intersection point

Ray m_ray; // Strahl
float m_t; // Geradenparameter t
Object* m_object; // Geschnittenes Objekt
Vector m_location; // Schnittpunkt
Vector m_normal; // Normale am Schnittpunkt

G. Zachmann 53 Ray Tracing Advanced Computer Graphics 24 April 2014 SS

§  Object =
abstract base class
for all
geometry
primitives

// Schnittpunkt von Strahl mit Objekt
virtual bool closestIntersection(Intersection * hit) = 0;
virtual bool anyIntersection(const Ray & ray, float max_t,
 Intersection * hit) = 0;

// Normale am Schnittpunkt
virtual Vector calcNormal(Intersection * hit) = 0;

// Material des Objekts
int getMaterialIndex() const;

Object3D
bool intersect(Ray, Hit, max_t)

Plane
bool intersect(…)

Sphere
bool intersect(…)

Triangle
bool intersect(…)

Polyhedron
bool intersect(…)

G. Zachmann 54 Ray Tracing Advanced Computer Graphics 24 April 2014 SS

§  Camera:

§  Captures all properties of a virtual camera, e.g., from, at, up, angle

§  Generates primary rays for all pixels

§  Scene:

§  Stores all data about the scene

-  List of all objects

-  List of all materials

-  List of all light sources

-  Camera

§ Offers methods for calculating intersection between ray and geometry

§  Usually also stores some acceleration data structure

G. Zachmann 55 Ray Tracing Advanced Computer Graphics 24 April 2014 SS

Interscetion of Ray with Triangle [Badouel 1990]

§  Use same method like ray—polygon; or

§  Be clever: use barycentric coords + projection

§  Intersect ray with plane (implicit form) → t → point in space

§  Project point & triangle on coord plane

§  Compute baryzentric coords of 2D point

§  baryzentric coords of 2D point (α,β,γ) =

baryzentric coords of orig. 3D point!

§  3D point is in triangle ⇔ α,β,γ > 0 , α+β+γ = 1

§  Alternative method: see Möller & Haines "Real-time Rendering"

§  Ex. faster method, if intersection point not needed [Segura & Feito]

G. Zachmann 56 Ray Tracing Advanced Computer Graphics 24 April 2014 SS

Alternative Intersection Method for Ray—Triangle [Möller]

§  Line equation:

§  Plane equation:

§  Equate both:

§  Write it in matrix form:

where

X = P + t ·d
X = A + r ·(B � A) + s ·(C � A)

�t ·d + r ·(B � A) + s ·(C � A) = P � A

u = B � A

v = C � A

w = P � A

dP C

B

A

0

B@

...
...

...
�d u v
...

...
...

1

CA

0

@
t
r
s

1

A = w

G. Zachmann 57 Ray Tracing Advanced Computer Graphics 24 April 2014 SS

§  Use Cramer's rule:

§  Cost: 2 cross products + 4 dot products

§  Yields both line parameter t and barycentric coords of hit point

§  Still need to test whether s,t in [0,1] and s+t <= 1

�

⇤
t
r
s

⇥

⌅ =
1

det (�d,u, v)
·

�

⇤
det (w,u, v)

det (�d,w, v)
det (�d,u,w)

⇥

⌅

0

@
t
r
s

1

A =
1

(d� v)·u ·

0

@
(w � u)·v
(d� v)·w
(w � u)·d

1

A

det(a,b, c) = a·(b� c) = (a� b)·c

G. Zachmann 60 Ray Tracing Advanced Computer Graphics 24 April 2014 SS

Intersection of Ray and Box

§  Box (Quader) is most important bounding volume!

§  Here: just axis-aligned boxes (AABB = axis-aligned bounding box)

§  AABB is usually specified by two extremal points

 (xmin, ymin, zmin) and (xmax, ymax, zmax)

§  Idea of the algorithm:

§  A box is the intersection of 3 slabs
(slab = subset of space enclosed
between two parallel planes)

§  Each slab cuts away a specific interval
of the ray

§  So, successively consider two
parallel (= opposite) planes of the box

(xmin, ymin, zmin)

(xmax, ymax, zmax)

G. Zachmann 61 Ray Tracing Advanced Computer Graphics 24 April 2014 SS

§  The algorithm:

let tmin = -∞ , tmax = +∞
loop over all (3) pairs of planes:
 intersect ray with both planes
 → t1, t2
 if t2 < t1:
 swap t1, t2
 // now t1 < t2 holds
 tmin ← max(tmin, t1)
 tmax ← min(tmax, t2)
// now: [tmin,tmax] = interval inside box
if tmin > tmax → no intersection
if tmax < 0 → no intersection

tmin

tmax t2

t1

tmax

tmin

tmax

G. Zachmann 62 Ray Tracing Advanced Computer Graphics 24 April 2014 SS

Remarks

§  Optimization: both planes of a slab have the same normal ⟶ can
save one dot product

§  Remark: the algorithm also works for "tilted" boxes (called OBBs
= oriented bounding boxes)

§  Further optimization: if AABB, exploit fact that normal has exactly
one component = 1, other = 0!

§  Warning: "shit happens"

§  Here: test for parallel situations!

§  In case of AABB:

if |dx| < ε:
 if Px < xmin || Px > xmax:
 ray doesn't intersect box
 else:
 t1, t2 = ymin, ymax // or vice versa!

ymax

ymin

xmin xmax
d

P

G. Zachmann 63 Ray Tracing Advanced Computer Graphics 24 April 2014 SS

Intersection Ray—Sphere

§  Assumption: d has length 1

§  The geometric method:

§  The algebraic method:
insert ray equation into implicit sphere equation

§  There are many more approaches …

|t ·d�m| = r

(t ·d�m)2 = r2

t2 � 2t ·md + m2 � r2 = 0

m d

r

M

P
t1

t2

G. Zachmann 64 Ray Tracing Advanced Computer Graphics 24 April 2014 SS

§  The algorithm, with small optimization:

calculate

calculate

if >= 0 // ray origin is outside sphere

 and b <= 0: // and direction away from sphere

then

 return "no intersection"

let

if d < 0:

 return "no intersection"

if :

 return // enter; t1 is > 0

else:

 return // leave; t2 is > 0 (t1<0)

m2–r2

b = m·d
m2–r2

d = b2 �m2 + r2

m2–r2 > �
t1 = b �

⇥
d

t2 = b +
�

d

G. Zachmann 65 Ray Tracing Advanced Computer Graphics 24 April 2014 SS

§  Ray-sphere intersection is so easy that all ray-tracers have spheres
as geometric primitives! J

G. Zachmann 66 Ray Tracing Advanced Computer Graphics 24 April 2014 SS

The "sphere flake"

